Human-in-the-Loop Person Re-identification

نویسندگان

  • Hanxiao Wang
  • Shaogang Gong
  • Xiatian Zhu
  • Tao Xiang
چکیده

Current person re-identification (re-id) methods assume that (1) pre-labelled training data are available for every camera pair, (2) the gallery size for re-identification is moderate. Both assumptions scale poorly to real-world applications when camera network size increases and gallery size becomes large. Human verification of automatic model ranked re-id results becomes inevitable. In this work, a novel human-inthe-loop re-id model based on Human Verification Incremental Learning (HVIL) is formulated which does not require any pre-labelled training data to learn a model, therefore readily scalable to new camera pairs. This HVIL model learns cumulatively from human feedback to provide instant improvement to re-id ranking of each probe on-the-fly enabling the model scalable to large gallery sizes. We further formulate a Regularised Metric Ensemble Learning (RMEL) model to combine a series of incrementally learned HVIL models into a single ensemble model to be used when human feedback becomes unavailable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

People Re-identification in Non-overlapping Field-of-views using Cumulative Brightness Transform Function and Body Segments in Different Color Spaces

Non-overlapping field-of-view (FOV) cameras are used in surveillance system to cover a wider area. Tracking in such systems is generally performed in two distinct steps. In the first step, people are identified and tracked in the FOV of a single camera. In the second step, re-identification of the people is carried out to track them in the whole area under surveillance. Various conventional fea...

متن کامل

The Effect of Three Human Identification Levels (Sensual, Rational, and Spiritual) on One`s Moral Development Based on the Three Levels of Nafs (Ammarah, Lawwamah, and Mutma’innah) in Mathnavi

Based on the evolutionary-analogical development of human identification, Molawi considers three identifying ranks for human. Accordingly, in the sensual rank, a person behaves based on the attraction of sensual stimuli and his external identifying environment and also he sees the reflection of collective identity as “ego” of himself. Versus his own absolute demand of rights from the environmen...

متن کامل

بازشناسی انسان در سیستم‌های نظارت ویدئویی

People re-identification is one of the most important and fundamental processes in video surveillance systems. The accuracy and efficiency of this task influence the effectiveness of the subsequent processes. Event detection and behavior analysis are instances of such subsequent processes that are classified in semantic levels. In people re-identification, having an image or video of an individ...

متن کامل

Highly Efficient Regression for Scalable Person Re-Identification

Existing person re-identification models are poor for scaling up to large data required in real-world applications due to: (1) Complexity: They employ complex models for optimal performance resulting in high computational cost for training at a large scale; (2) Inadaptability: Once trained, they are unsuitable for incremental update to incorporate any new data available. This work proposes a tr...

متن کامل

Person Re-Identification By Saliency Learning

Human eyes can identify person identities based on small salient regions, i.e. person saliency is distinctive and reliable. Saliency relates to matching regions with attributes that make a person distinctive and are useful in finding the same person across camera views. Person re-identification with saliency learning can be applied in human tracking, surveillance , retrieval etc.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016